Caricare documenti e articoli online 
INFtube.com è un sito progettato per cercare i documenti in vari tipi di file e il caricamento di articoli online.
Meneame
 
Non ricordi la password?  ››  Iscriviti gratis
 

ELEMENTI DI CALCOLO DELLE PROBABILITA'

matematica


Inviare l'articolo a Facebook Inviala documento ad un amico Appunto e analisi gratis - tweeter Scheda libro l'a WhatsApp - corso di

ELEMENTI DI CALCOLO DELLE PROBABILITA'










v LA PROBABILITA' NELLE CONCEZIONE FREQUENTISTA (O STATISTICA)


Si definisce frequenza relativa di un evento in n prove effettuate nelle stesse condizioni, il rapporto fra il numero di k delle prove nelle quali l'evento si è verificato ed il numero n delle prove effettuate:                 

f= k/n


Legge empirica del caso. In una serie di prove ripetute un gran numero di volte, eseguite tutte nelle stesse condizioni, la frequenza "tende" ad assumere valori prossimi alla probabilità dell'evento e, generalmente, l'approssimazione è tanto maggiore quanto più grande è il numero delle prove eseguite.


La probabilità di un evento è la frequenza relativa in un numero di prove ritenuto "sufficientemente" elevato.



ESEMPIO:

Se si lancia un dado regolare per 6.000 lanci, quante volte, mediamente, si dovrebbe presentare un numero pari? Quante volte si dovrebbe presentare un numero minore di 3?


Pari= 6000/3=2000  Dispari= 6000/2




v LA PROBABILITA' NELL'IMPOSTAZIONE ASSIOMATICA


Si definisce evento contrario (o complementare) dell'evento A, l'evento Ā che si verifica se e solo se non si verifica A, cioè Ā è il sottoinsieme complementare di A rispetto ad U.


Si definisce somma logica (o unione) di due eventi A e B, l'evento A U B che si verifica quando si verifica almeno uno de due eventi A o B.


Si definisce prodotto logico (o intersezione) di due eventi A e B, l'evento A ∩ B che si verifica se si verificano entrambi gli eventi A e B.


La probabilità P(E) è una funzione che associa ad ogni evento del campo degli eventi un numero reale, in modo che siano soddisfatti i seguenti assiomi:

  1. P(E) ≥ 0
  2. P(U) = 1
  3. Se E1 ed E2 sono incompatibili si ha: P(E1 U E2) = P(E1)+P(E2)


Da questi assiomi si deducono le seguenti proprietà:


a)      L'evento impossibile ha probabilità zero


b)      Dato un evento E, la probabilità dell'evento contrario Ē è uguale al complemento ad 1 della probabilità dell'evento: P(Ē) = 1 - P(E)


c)      Dalla relazione precedente e dall'assioma 1° si deduce che la probabilità è un numero reale compreso fra zero ed uno, cioè: 0≤P(E)≤1


d)      Per la proprietà associativa dell'unione fra insiemi


e)      Se E1 C E2, allora la probabilità della differenza fra E2 ed E1, è uguale alla differenza delle probabilità: P(E2|E1)= P(E2) - P(E1)




v PROBABILITA' DELLA SOMMA LOGICA DI EVENTI


La probabilità della somma logica di due eventi è eguale alla somma delle probabilità dei due eventi diminuita della probabilità della intersezione dei due eventi.


Se due eventi A e B sono compatibili si ha la seguente relazione di Boole:


P(A U B)= P(A) + P(B) - P(A ∩ B)


La precedente relazione si estende alla somma logica di tre eventi A, B, C qualunque


P(A U B U C)= P(A) + P(B) + P(C) - P(A∩B) - P(A∩C) - P(B∩C) + P(A∩B∩C)



ESEMPIO:

Da un'urna contenente 30 palline numerate da 1 a 30 si estrae una pallina, calcolare la probabilità dei seguenti eventi:

a)      Esce una pallina con un numero minore di 10 o maggiore di 25: (9+5)=14/30=7/15

b)      Esce una pallina con un numero divisibile per 4 o per 5: (7/30+6/30-1/30)=12/30=2/5

c)      Esce una pallina con un numero divisibile per 7 o per 11: 6/30=3/15=1/15











Privacy

Articolo informazione


Hits: 1155
Apprezzato: scheda appunto

Commentare questo articolo:

Non sei registrato
Devi essere registrato per commentare

ISCRIVITI

E 'stato utile?



Copiare il codice

nella pagina web del tuo sito.


Copyright InfTub.com 2020