|
|
Teorema sull'INTERSEZIONE
Tg (AB)= XB-XA/ YB-YA
AB¯=XB-XA/ sen(AB)
APˉ=ABˉ/ senγ·senβ 636c28g
BPˉ= ABˉ/ senγ·senα
(AP)=(AB)-α
(BP)=(AB)±180+β
(XP)A=APˉ sen(AP)
(YP)A= APˉ cos(AP)
(XP)B=BPˉ·sen(BP)
(YP)B= BPˉ·cos(BP)
XP=XA+(XP)A
YP=YA+(YP)A
XP=XB+(XP)B
YP=YB+(YP)B
Teorema di SNELLIUS
Tg(BA)=XA-XB/YA-YB
Tg(BC)=XC-XB/YC-YB
BAˉ= XA-XB/sen(BA)
BCˉ= XC-XB/sen (BC)
ω=(BA)-(BC)
PÂB=x
PĈB=y
x+y/2=180-½ (α+β+ω)
x-y/2=inv tg[tg x+y/2 ·cotg (θ+45)]
θ=inv tg AB¯·senβ/BC¯ sen
x=M+N
y=M-N
ω1=180-(α+x)
+y)
AP¯=AB¯/senα·senω1
CP¯=BC¯/senβ· senω2
BP¯=BC¯/senβ·seny
BP¯=BA¯/senα·senx
(AP)=(BA)±180+x
(BP)=(BC)+ ω2
(CD)=(BC)±180-Y
(XP)A=AP¯·sen(AP)
(YP)A= AP¯·cos(AP)
(XP)B=BP¯·sen(BP)
(YP)B= BP¯·cos(BP)
(XP)C=CP¯·sen(CP)
(YP)C= CP¯·cos(CP)
XP=XA+(XP)A
YP=YA+(YP)A
XP=XB+(XP)B
YP=YB+(YP)B
XP=XC+(XP)C
YP=YC+(YP)C
Teorema di HANSEN
α1=APQ =AQP =BPQ β2=BQP
Tg (AB)= XB-XA/ YB-YA
AB¯=XB-XA/ sen(AB)
x+y/2=90- ½ (α1-β1)
x-y/2=inv tg[tg x+y/2 ·cotg (θ+45)]
θ=inv tg senα2·senβ1+β2/sen sen
x=M+N
y=M-N
(AP)=(AB)+x
(AQ)=(AP)-[180-(
(BP)=(AB)±180-y
(BQ)= (BP)-[180-(β1+β2 )]
AP¯=AB¯/sen (α1- sen y
BP¯= AB¯/sen (α1- sen x
AQ¯= AB¯/sen ( sen y+180-(
BQ¯= AB¯/sen ( sen x-180-(α1+
(XP)A=AP¯·sen(AP)
(YP)A= AP¯·cos(AP)
(XQ)A=AQ¯·sen(AQ)
(YQ)A= AQ¯·cos(AQ)
(XP)B=BP¯·sen(BP)
(YP)B= BP¯·cos(BP)
(XQ)B =BQ¯·sen(BQ)
(YQ)B= BQ¯·cos(BQ)
XP=XA+(XP)A
YP=YA+(YP)A
XQ=XA+(XQ)A
YQ=YA+(YQ)A
XP=XB+(XP)B
YP=YB+(YP)B
XQ=XB+(XQ)B
YQ=YB+(YQ)B
Privacy |
Articolo informazione
Commentare questo articolo:Non sei registratoDevi essere registrato per commentare ISCRIVITI |
Copiare il codice nella pagina web del tuo sito. |
Copyright InfTub.com 2024