Caricare documenti e articoli online 
INFtube.com è un sito progettato per cercare i documenti in vari tipi di file e il caricamento di articoli online.
Meneame
 
Non ricordi la password?  ››  Iscriviti gratis
 

RISULTATI ATTESI - la misurazione della resistenza in corrente continua di più resistori con il metodo del ponte di Wheatstone

tecnica


Inviare l'articolo a Facebook Inviala documento ad un amico Appunto e analisi gratis - tweeter Scheda libro l'a WhatsApp - corso di

SCOPO DELL'ESPERIENZA


Lo scopo dell'esperienza è quello di eseguire la misurazione della resistenza in corrente continua di più resistori con il metodo del ponte di Wheatstone.



RISULTATI ATTESI


Conosciamo i valori nominali delle resistenze dei resistori che vogliamo misurare:


X1 = 10 W 5 %

X2 = 10 kW 5 %



X3 = 100 W 5 %


Il ponte di Wheatstone è un metodo di misurazione diretta per confronto con una resistenza campione, che in quanto tale garantisce una precisione sufficiente a raggiungere valori di incertezza inferiori a quelli che si riscontrano nella misura ottenuta con il metodo volt-amperometrico. Infatti, se con il metodo volt-amperometrico l'incertezza raggiunge valori dell'ordine dell'1%, perché abbia senso utilizzare un metodo più complesso, qual è quello del ponte di Wheatstone, l'incertezza della misura finale deve essere almeno dell'1 o/oo.



IL CIRCUITO


Il ponte di Wheatstone ha la seguente configurazione:





dove è possibile variare grossolanamente i valori di a e di b, mentre c è il campione finemente variabile. Lo scopo di variare a , b e c è di annullare la tensione ai capi del galvanometro (che è posto fra i nodi 1 e 2), così che:



VG =V12= 0                 =>


da cui:                         

di conseguenza leggendo i valori di a , b e c quando VG = 0 siamo in grado di determinare il valore 757i87h di x.         



APPARECCHIATURE USATE


Cassetta di resistori Allocchio Bacchini & C

mod 1548 inv. Nº 2559

2x5 valori da 1 a 10000 W

potenza dissipata per ogni bobina: 2 W a carico continuo

taratura eseguita a 0.02%


Decade Resistor Decabox

Type 1434_N, serial 9749, inv. Nº2736

Incertezza: (0.02% + 5mW

Coefficiente di temperatura: < 10 ppm / ºC a temperatura ambiente; per bassi valori di resistenza è necessario aggiungere 0.4% / ºC.


Tolleranze in corrente continua:


Resistenza totale di decade

Resistenza per step

Accuratezza

W

0.1 W

3%

W

W

0.3%

W

W

0.05%

1 k W

W

0.02%

10 kW

1 kW

0.02%

100 kW

10 kW

0.02%

1 MW

100 kW

0.02%




Resistenze da misurare

Scatolini R2 di resistori con resistenze nominali pari a 10W W W W ; incertezza nominale 5% ; potenza nominalmente dissipabile 5W ; coefficiente di temperatura 200 ppm/K



Galvanometro

Type 2707, inv. Nº 2762

Max sensitivity: 10 mV    (1 nA)

Max input : 5 V

Resistenza di ingresso 9 kW


Interruttore SEB

Mod T/S no 720826, inv Nº 2616


Interruttore a coltelli

Inv Nº 2328


DC power supply HP E3611A

Inv Nº 3097

Tensione di uscita massima 35 V




ESECUZIONE DELLA MISURAZIONE


Abbiamo eseguito una misurazione per tre dei quattro resistori a disposizione.


x = 10 W


Il valore nominale della resistenza è: xn = 10 W

Occorre scegliere il valore da assegnare:          - alla tensione di alimentazione E

alle resistenze a, b e c

in modo da ottenere un compromesso ottimale tra precisione, sensibilità e risoluzione.

Poiché a e b possiedono un'incertezza pari a 2 10-4, è bene scegliere c in modo da non peggiorare tale accuratezza. In questo caso dunque:    

ovvero devo poter agire sui mW di x.

Poiché la minima variazione possibile di c è pari a 0.1 W

Ne consegue che c = x/0.01 = 1000W

Per soddisfare il rapporto a / b che abbiamo ottenuto, poniamo a e b più grandi possibili, in modo tale da rendere trascurabile l'effetto delle resistenze di contatto:

a = 100 W b = 10000 W


Verifichiamo dunque gli effetti della scelta dei parametri sulla sensibilità.

L'equivalente di Thevenin ai capi del galvanometro è:




La sensibilità è tanto migliore quanto più la tensione ai capi del galvanometro tende a Eo, e questo si verifica se Ri è piccola rispetto a g. Per cui valutiamo Ri , conosciamo g e dunque possiamo avere una stima dell'effetto della configurazione scelta sulla sensibilità.

Ri = (a // b) + (c // x) = (100 // 10000) + (1000 // 10) 100 + 10 = 110 W


g 10000 W dunque circa 1% della Eo cade su Ri il che implica una buona sensibilità.


Per quanto riguarda la risoluzione, se imponessimo c = 10000 W , sicuramente aumenterebbe ma ne conseguirebbe:

x / c = 0.001 = a / b,  con a = 10 W e b = 10000 W ; un valore di a così piccolo implica che bisogna tener conto anche delle resistenze di contatto, ma si preferisce non avere contributi significativi delle resistenze di contatto data la loro natura aleatoria.

Per queste ragioni scegliamo   a = 100 W b = 10000 W c = 1000 W


Per quanto riguarda il valore di E, all'equilibrio si ha:




Px = x I12          E =

Pc = c I12          E =

Pa = a I22          E =

Pb = b I22         E =


Affinché x non bruci è necessario che non assorba una potenza superiore ai 5 W; pertanto ponendo Px = 0.5 W siamo sicuramente al riparo da rischi di questo tipo ed inoltre siamo certi che la sovra temperatura è accettabile ai fini della variazione di resistenza dovuta all'autoriscaldamento. In tali condizioni si ottiene:          E226 V


I valori di a, b, e c sono garantiti dal costruttore per potenze inferiori a 2 W.

Ponendo Pa = Pb = Pc = 2W   si ottengono i seguenti risultati:

a)          Pa = 2W   E = 1428 V

b)         Pb = 2W   E = 143 V

c)          Pc = 2W   E = 45 V


Dunque il valore massimo che può assumere la tensione E è pari a 45 V: partiremo da un valore di E pari a 25 V circa e se avremo bisogno di maggiore sensibilità la aumenteremo fino ad un massimo possibile di 35 V , che è il massimo consentito dal nostro alimentatore.


I ragionamenti fin qui svolti valgono anche per le altre misurazioni. In modo specifico per questo caso vanno considerate anche le resistenze di contatto come influenti sul valore di x, in quanto x=10 W con accuratezza al o/oo comporta un'incertezza dell'ordine dei mW e le resistenze di contatto sono dell'ordine delle decine di mW. Il modo migliore di rendere trascurabile l'effetto delle resistenze di contatto è quello di metterle in serie a grandi resistenze: a questo scopo si usano resistori a 4 morsetti , collegati come mostra lo schema seguente



Si osservi che è possibile collegare solamente un resistore a 4 morsetti, gli altri sono a 2 o a 3 morsetti.

Materialmente, il resistore a 4 morsetti si realizza utilizzando 2 connessioni boccola-banana e 2 forchetta-banana.




2) xn = 10 kW


Procedendo secondo i passaggi logici esposti per il caso 1) otteniamo:



dobbiamo poter agire sugli ohm di x, quindi





di conseguenza

perdiamo circa il 20% su Ri , il risultato è accettabile.

Eseguendo la prova ci si rende conto che la risoluzione non è sufficiente , quindi è necessario andare ad agire sui decimi di ohm di x.

Ne consegue che







Si perde il 50% su Ri , che è tanto.


Ma per rendere l'effetto delle resistenza di contatto trascurabile si può anche porre a=1kW e b=1kW, così


Si perde il 35% su Ri, che è un valore accettabile e garantisce la risoluzione desiderata.



3) xn = 100 W




su Ri si perde il 10%.

Anche in questo caso eseguendo la misura ci si rende conto che occorre migliorare la risoluzione:

si deve poter agire sui milliohm di x.


Da cui


Perdiamo il 2% della tensione su Ri, siamo nella condizione ottimale.











DIARIO




Rx considerata (ohm)

Valore di Rc (ohm)

Tacche lette sul galvanometro

Alimentazione

Temperatura (°C)




Diretta





Inversa










Diretta





Inversa





Diretta










Inversa










STIMA DELLE INCERTEZZE


Le cause di incertezza sono:                             - il modello utilizzato

la sensibilità del ponte

le resistenze di contatto

le resistenze di dispersione

l'effetto Seebeck


- Per quanto riguarda l'effetto Seebeck, sia x1 la resistenza misurata prima dell'inversione dell'alimentazione ed x2 quella misurata dopo; avremo che:

x1 = x + Dx'                            x2 = x - Dx'

dove Dx' è la variazione del valore della resistenza dovuta all'effetto Seebeck.

Quindi:

ovvero , facendo la media fra i due valori di x si elimina l'incertezza dovuta all'effetto Seebeck.


- Le resistenze di dispersione sono dell'ordine di un centinaio di MW. La resistenza più grande che usiamo è pari a 10 kW: il parallelo tra le due vale 10 kW // 100 MW 10 kW, ed è quindi lecito trascurare gli effetti delle resistenze di dispersione.

Per le resistenze di contatto si utilizzano gli accorgimenti già discussi in precedenza che consentono di trascurarne l'effetto.

Per l'incertezza dovuta al modello utilizzato e quella legata alla sensibilità del ponte, possiamo dire:

x =            quindi:

Tenendo conto anche della sensibilità del ponte:          


dove



e la si ricava sperimentalmente durante la misura:

dalla posizione in cui si trova durante la lettura si fa variare C di 0.1W (C=valore di C quando VG DC=0.1W) e si legge di quante tacche si sposta l'indice del galvanometro (De=numero di tacche di cui si è spostato il galvanometro dalla posizione di equilibrio, de=1tacca)





RISULTATI OTTENUTI


Xn= 10 W


Stima dell'incertezza:


- ea eb


sperimentalmente abbiamo ottenuto s% = 0.005 %


Alimentazione diretta


lettura ( C ) W fatta a 0 tacche



    da cui C = 995,9 W


Inversione di alimentazione


lettura ( C ) W fatta a -1 tacche


C = 995,9 W


lettura ( C ) W fatta a +1 tacche



    da cui C = 996,0 W



Per determinare il valore 757i87h di C con alimentazione invertita dobbiamo procedere per interpolazione tra i due valori ottenuti:



Da cui   C = 995,95 W


N.B. : L'interpolazione consente di guadagnare una cifra sola


In definitiva


C = [C(alimentazione diretta)+C(alimentazione inversa)]/2


In una somma le incertezze assolute si sommano , dunque


DC = DC (alimentazione diretta ) + DC (alimentazione inversa )


Eseguendo questi calcoli otteniamo:


C = ( 995,9 + 995,9 ) / 2 = 995,9 W


DC = 0,3 + 0,2 = 0,5 W


ec


Ne risulta una incertezza complessiva pari a


ex


La s non compare perchè dà un contributo che è dell'ordine dell'incertezza delle incertezze di ea ,eb, ec





Xn= 10 KW


Stima dell'incertezza:


- ea eb


s% = 0.0003 % ( calcolata durante l'esecuzione della misura )


Alimentazione diretta


lettura ( C ) W



    da cui C = 10275.3 W



Per determinare il valore 757i87h di C con alimentazione diretta dobbiamo procedere per interpolazione tra i due valori ottenuti:




10273.2 10277.4      fatta a +1 tacche


10273.1 10277.3      fatta a -2 tacche


da cui si ottiene


C = 10275.27 2.10     


Inversione di alimentazione


lettura ( C ) W




    da cui C = 10275.2 W


Per determinare il valore 757i87h di C con alimentazione invertita dobbiamo procedere per interpolazione tra i due valori ottenuti:


10273.1 10277.3      fatta a +1 tacche


10273.2 10277.4      fatta a -3 tacche


da cui si ottiene


C = 10275.22 2.10     


In definitiva


C = [C(alimentazione diretta)+C(alimentazione inversa)]/2


DC = DC (alimentazione diretta ) + DC (alimentazione inversa )


C = ( 10275,27 + 10275,22 ) / 2 = 10275,24 W


DC = 2,1 + 2,1 = 4,2 W


ec


Ne risulta una incertezza complessiva pari a


ex


La s non compare perchè dà un contributo che è dell'ordine dell'incertezza delle incertezze di ea ,eb, ec




Xn= 100 W


Stima dell'incertezza:


- ea eb


s% = 0.003 % ( calcolata durante l'esecuzione della misura )


Alimentazione diretta


lettura ( C ) W fatta a 0 tacche




    da cui C = 9938.4 W


Inversione di alimentazione


lettura ( C ) W fatta a 0 tacche


    da cui C = 9938.0 W




In definitiva


C = [C(alimentazione diretta)+C(alimentazione inversa)]/2


DC = DC (alimentazione diretta ) + DC (alimentazione inversa )


C = ( 9938,4 + 9938,0 ) / 2 = 9938,2 W


DC = 2,031 + 2,019  4,0 W


ec


Ne risulta una incertezza complessiva pari a


ex


La s non compare perchè dà un contributo che è dell'ordine dell'incertezza delle incertezze di ea ,eb, ec












RISULTATI FINALI


In definitiva abbiamo ottenuto i seguenti valori:


Xn = 10 W


X = * c = 0,01*995,9 = 9,959 W


DX = eX * X ==0,009 W


quindi:      X = 9,959 0,009 W



Xn = 10 KW


X = * c = 1*10275,24 = 10275,24 W


DX = eX * X ==8 W


quindi:      X = 10275 8 W



Xn = 100 W


X = * c = 0,01* 9938,2 = 99,382 W


DX = eX * X ==0,08 W


quindi:     X = 99,38 0,08 W







MISURE MEDIANTE OHMMETRI DI ALTA PRECISIONE


Lo scopo di questa seconda parte dell'esperienza è quello di avere dei risultati da poter confrontare con quelli ottenuti con il metodo del ponte di Wheatstone.





Apparecchiature usate


Multimetro digitale HEWLETT PACKARD E34401A:


Resistence range

Caratheristics

(% of reading

+ % of range)

W


W



Multimetro di precisione (in ambiente controllato):


Resistence range

Caratheristics

(% of reading

+ % of range)

W

15ppm + 5ppm

W

12ppm + 5ppm

W

10ppm + 0.5ppm



Esecuzione della misura


Sono state effettuate le misurazioni dei resistori da 10 e da 10000 W con ohmmetri digitali aventi precisione diversa, ottenendo i seguenti risultati:




Rx teorica

Valore multimetro digitale

Valore multimetro di precisione

W

9.9803 V

9.98042 V

W

10277.96 V

10278.022 V


Stima dell'incertezza


È possibile stimare le cause d'incertezza, dovute unicamente allo strumento, grazie alla formula binomia che il costruttore riporta nel manuale:

errore totale = (errore lettura) (lettura) + (errore portata) (portata)


Multimetro

Portata (W

Errore relativo portata

Errore assoluto portata (W

Lettura

Errore percentuale lettura

Errore assoluto lettura (W

Dx

totale  (W


°C

Digitale















Precisione


5 ppm


15 ppm




0.5 ppm


10 ppm









Si ottengono dunque i valori di Rx:


Multimetro

Rx  (W

Digitale




Precisione








ANALISI DEI RISULTATI



Per ogni misura abbiamo ottenuto un'incertezza dell'ordine di 10-4 raggiungendo così l'obiettivo prefissato.



Si osserva inoltre che :

xn = 10 W 5%        xn = 10 0.5 W

xn = 10 kW 5%      xn = 10 0.5 kW

xn = 100 W 5%      xn = 100 5 W


confrontando questi intervalli di valori con quelli ottenuti con il metodo del ponte di Wheatstone si vede che risultano compatibili.



Per confrontare i risultati ottenuti con il metodo a ponte con quelli delle misure con ohmetro occorre riportare le misure fatte ad una stessa temperatura , sfruttando la seguente formula:


dove Dt è il salto termico.



Xn=10 W


Metodo a ponte : temperatura ambiente = 25.1°C      x=9.959 W



Multimetro digitale : temperatura ambiente = 25.5°C   x=9.980 W

dunque x(25.1°C) = 9.979 W



Multimetro di precisione : temperatura ambiente = 22.9°C x=9.98055 W

dunque x(25.1°C) = 9.98494 W




Xn=10 kW


Metodo a ponte : temperatura ambiente = 25.3°C      x=10275 W



Multimetro digitale : temperatura ambiente = 25.5°C   x=10278.0 W

dunque x(25.3°C)=10277.6 W



Multimetro di precisione : temperatura ambiente = 22.9°C x=10277.868 W

dunque x(25.3°C)=10282.801 W



Né per x=10W né per x=10kW otteniamo la compatibilità delle tre misure. Ciò può essere imputabile al fatto che , per motivi di tempo, le due misure con ohmetro sono state fatte senza aspettare un tempo sufficiente affinché si raggiungesse l'equilibrio termico fra ambiente esterno e scatola contenente i resistori.







Privacy

Articolo informazione


Hits: 2920
Apprezzato: scheda appunto

Commentare questo articolo:

Non sei registrato
Devi essere registrato per commentare

ISCRIVITI

E 'stato utile?



Copiare il codice

nella pagina web del tuo sito.


Copyright InfTub.com 2020