Caricare documenti e articoli online 
INFtube.com è un sito progettato per cercare i documenti in vari tipi di file e il caricamento di articoli online.
Meneame
 
Non ricordi la password?  ››  Iscriviti gratis
 

Matematica Discreta

matematica


Inviare l'articolo a Facebook Inviala documento ad un amico Appunto e analisi gratis - tweeter Scheda libro l'a WhatsApp - corso di

Matematica Discreta



Matrice: E' una tabella di numeri indicizzati ed è formata da righe e colonne, rispettivamente (m,n


Determinante:L'unica matrice per cui posso parlare di determinante e quella quadrata, cioè "m = n". E' un numero associato ad una matrice quadrata secondo una certa regola.


Prodotto per uno scalare: l A cioè moltiplico per l tutti i termini di A.




Prodotto tra matrici: Si esegue moltiplicando righe per colonne. Si può esegui-

re solo se le colonne della prima matrice sono tante qua 343j98d nte le righe della seconda matrice. Il prodotto di due matrici A B è diverso dal prodotto di B A.


Somma algebrica: Si effettua la somma algebrica termine a termine e si esegue soltanto tra matrici dello stesso ordine.


Matrice identità o unitaria: E' una matrice quadrata con il numero 1 su ogni elemento della diagonale principale e 0 altrove.


Matrice trasposta: E' una matrice che si ottiene scambiando le righe con le colonne.


Matrice simmetrica: La matrice di partenza A è uguale alla matrice stessa trasposta. Quindi si può dire che  A = At.


Matrice emisimmetrica: La matrice di partenza A è uguale alla matrice stessa trasposta però negativa. Quindi si può dire che A = -At.


TEOREMA

Una combinazione lineare di matrici simmetriche dello stesso ordine dà sempre una matrice simmetrica di quell'ordine.


Matrice inversa: E' quella matrice per cui vale la seguente regola: data una matrice A quadrata di ordine "n", l'inversa A A = A A = In. In cui det A diverso da 0.

Le uniche matrici che si possono invertire sono quelle quadrate non singolari.


Regola Generale:        A = ajk A = 1/det A akj

In cui "k e j" sono i complementi algebrici della trasposta.

 


TEOREMA

Un determinante non cambia se una riga (o colonna) è sostituita da una combinazione lineare di altre righe o colonne.


Sistemi Lineari: Sono chiamati lineari in quanto tutte le incognite che lo compongo-

No, sono elevate ad 1.


X = Vettore colonna delle incognite.

A = Matrice dei coefficienti.

B = Vettore colonna dei termini noti.


A A X = A B


Proprietà dell'inversa:  A A = In


IX = A B


Proprietà dell'identica: I A = A


X = A B                         In questo caso troviamo le soluzioni.


TEOREMA DI KRAMER

Se il determinante di una matrice "A" è diverso da 0, allora esiste una ed una sola soluzione.

X = A B (Metto la colonna dei termini noti in corrispondenza dell'incognita che calcolo)


TEOREMA DI ROUCHE' - CAPELLI

Si può dire che è il teorema generale, di cui fa parte anche quello di Kramer, che rappresenta un suo caso particolare.

Il sistema lineare ammette una o più soluzioni se : r(A) = r(A

Ovvero il rango della matrice dei coefficienti (A), deve essere uguale al rango della matrice ampliata con la colonna dei termini noti(A


Caratteristica o Rango: E' l'ordine massimo dei minori, diversi da 0, estraibili dalla matrice, ovvero il numero delle righe, (o colonne), linearmente indipendenti.

Il rango viene "indagato" con la regola di Kramer e vale 0 solo per matrici che hanno nullo ogni elemento.


Kronecker: Per utilizzare la regola di Kronecker, occorre partire da un minore, sicuramente diverso da 0, di ordine 1. Successivamente lo si "orla" in tutti i modi possibili per gli ordini successivi, trovando determinanti del 2 ordine, fino a quando se ne trova uno diverso da 0. A quel punto ci si ferma e si passa all'ordine successivo.

Sistemi omogenei: Sono sistemi che danno come risultato una soluzione "banale" ed hanno sempre termini noti nulli. Se il determinante è = 0 c'è una e una soluzione, cioè quella banale; per avere una soluzione diversa da quella banale il determinante dovrà essere = 0


Sistema di vettori: Dato un sottospazio, un sistema di vettori è base, se i vettori sono linearmente indipendenti e ogni vettore del sottospazio può essere espresso come combinazione lineare di essi.

Un vettore è sempre definito in funzione della base fissata. Cosi' possiamo parlare della Base Canonica.


TEOREMA

Un insieme di elementi è spazio vettoriale, se valgono le seguenti proprietà:

X + (Y + Z) = (X + Y) + Z               Associativa della somma

X + Y = Y + X               Commutativa della somma

0 + X = X + 0 = X                            Lo 0 è l'elemento neutro rispetto alla somma

X + (-X ) = 0  Definizione del vettore opposto

a ( X + Y ) = aX + aY                   Distributiva rispetto alla somma di vettori



a b X = aX + bX                  Distributiva rispetto alla somma di scalari

a bX ) = ( ab X                     Associativa mista

n n Legge di unità


Sottospazio: E' composto da elementi dello spazio (quindi gode delle 8 proprietà), ma deve essere chiuso rispetto alla somma e al prodotto per uno scalare.

Per poter dire che si parla di un sottospazio occorre dimostrare 2 condizioni:


Se V1 e V2 appartengono al sottospazio allora anche V1 + V2 deve appartenere.

Se V appartiene al sottospazio allora anche aV deve appartenere.


N.B. Se dovessero comparire termini noti o se ci fossero potenze diverse da 1, non ci sarebbe sottospazio.


Intersezione ed Unione di sottospazi:




Sono quegli elementi che                      Sono quegli elementi o all'uno

Appartengono contempo-                     o all'altro dei sottospazi.

raneamente ad entrambi

i sottospazi.




Base di uno spazio vettoriale: si dice che" R<= n", vettori di uno spazio vettoriale, costituiscono una base se:

sono linearmente indipendenti; (cioè se il rango di A è =3; non lo sono se è <3)

tutti i vettori dello spazio possono esprimersi come combinazione lineare di questi.


Applicazioni: f : x - y

E' una regola algebrica che, dato un vettore "x X" lo trasforma in un vettore

y Y. Con questa legge trasformo ogni coordinata di un vettore dato x nel suo corrispondente vettore y. Le coordinate che otterrò dopo la trasformazione saranno

l'immagine del vettore iniziale; dall'immagine posso risalire alla controimmagine cioè alle coordinate di partenza.


Regola di " Kernel" o Ker f

Kernel = nucleo: il nucleo dell'applicazione è l'insieme dei vettori dello spazio X che si trasformano nel vettore nullo dello spazio Y.

Dim. Ker f = n - r(A).

Dim. In f = n - dim Ker f

In f: è il sottospazio che comprende tutte le immagini.


TEOREMA

La matrice che dà la base vecchia in funzione della base nuova è l'inversa della matrice che da la base nuova in funzione della base vecchia.


Matrice di transizione: è quella matrice che fa trovare il vettore nella nuova base partendo da quello nella base vecchia. A [Vb]     (Vb deve essere scritto in colonna)


Matrice ortogonale: una matrice si dice ortogonale se il prodotto di una linea per sé stessa dà come risultato 1 e una linea per un'altra linea dà come risultato 0.


Autovalori: data una matrice quadrata "A", si dice che l è il suo autovalore se:

det /A - lI / = 0

Un autovalore di f è uno scalare l K tale che esista un vettore non nullo di K in modo che sia: f (v) = l (v), cioè l'immagine di v sia multiplo di v secondo l


Autovettore: se l è un autovalore di f, un vettore V K, che soddisfa f (v) = l (v), si chiama autovetture di f associato all'autovalore l


Autospazio: Vl è un sottospazio vettoriale di K chiamato autospazio di f associato a l. L'autospazio è costituito da autovettori.


N.B. A ciascun autovalore è associato un autospazio costituito da autovettori.








Privacy

Articolo informazione


Hits: 1213
Apprezzato: scheda appunto

Commentare questo articolo:

Non sei registrato
Devi essere registrato per commentare

ISCRIVITI

E 'stato utile?



Copiare il codice

nella pagina web del tuo sito.


Copyright InfTub.com 2020