Caricare documenti e articoli online 
INFtube.com è un sito progettato per cercare i documenti in vari tipi di file e il caricamento di articoli online.
Meneame
 
Non ricordi la password?  ››  Iscriviti gratis
 

ESERCIZIO N°1: TEORIA GLOBALE

tecnica


Inviare l'articolo a Facebook Inviala documento ad un amico Appunto e analisi gratis - tweeter Scheda libro l'a yahoo - corso di


ESERCIZIO N°1: TEORIA GLOBALE.



Velivolo: AERO DESIGNS PULSAR

Dimensioni:

- Wing span:                                                                       7.62 m (25 ft 0 in)

- Wngs gross area:                                                          7.43 m2 (80.0 sq ft)

- Wing aspect ratio:                                                            7.81

Pesi:

- Weigth empty, equipped:                                                 231 Kgf (Kp) (510 lb)

- Max payload:                             254 Kgf (Kp) (560 lb)

- Max T-O weight:                                                             481 Kgf (Kp) (1060 lb)

Prestazioni: (at max T-O weigth)




- Cruising speed:          225 Km/h (62.5 m/s)

- Stalling speed (Vs)                                                           74 Km/h (20.5 m/s)



Scopo:

- analisi dei coefficienti di portanza CL e resistenza indotta CDi in diverse condizioni di volo, a        diverse quote e diversi pesi, secondo la formulazione della teoria globale;

- valutazione dell'angolo di deviazione della corrente b e della componente verticale della velocità DVv


Consideriamo, come primo caso, la condizione di volo di crociera con velocità V = 225 Km/h (62.5 m/s) alla quota di 4000 ft (1219 m) dove la densità dell'aria è pari a r = 1.09 Kg/m3, ed il peso massimo di decollo vale 481 Kgf.

Utilizzando l'espressione della portanza: L = ½ rV2SCL ed imponendo l'uguaglianza con la forza peso L = W , si ricava il valore del coefficiente di portanza:

CL = 2W/(rV2S) =

Grazie a questo risultato è possibile calcolare il coefficiente di resistenza indotta attraverso la sua espressione: CDi = KmCL2/(pAR) con AR = b2/S = 7.81.

Fissato Km = 1, risulta CDi = 0.0888/(p 7.81) = 0.00362. Dal valore di CDi ci possiamo anche, ricavare il rapporto tra il "coefficiente di snellezza" Sn del velivolo e il "parametro di forma in pianta" p (si ricordi che Sn=(b/2)/l, cioè rapporto tra semi-apertura alare e lunghezza della fusoliera, e p=s/bl, cioè rapporto tra la superficie alare e l'area del rettangolo che racchiude la pianta del velivolo); infatti: CDi=(CL2/2oKm)(p/Sn), per cui: p/Sn=(0.00227)/(0.298)2=0.0256.

Per quanto riguarda l'angolo di deviazione della corrente, utilizziamo l'espressione della portanza che si desume dalla legge di Newton: L = rVA(DVv) dove A è l'area del tubo di flusso: A = p b2/4 = 45.6 m2, sempre fissato Km = 1.

Se perciò b DVv/V allora b = L/(rV2A) = W/(rV2A) = 481 45.6] = 0.0243 radianti, ovvero in gradi: b

Infine DVv = bV 62.5 = 1.52 m/s.

Consideriamo, ora, la quota di 10000 ft (3048 m), dove la densità vale r = 0.905 Kg/m3; nelle stesse condizioni di velocità e peso.

In questa ipotesi si ha:CL = 2W/(rV2S) = 0.359; CDi = KmCL2/(pAR) = 0.00526; p/Sn=0.256;

b W/(rV2A) = 0.0293 rad = 1.68°; DVv = bV = 1.83 m/s.

Possiamo qui introdurre delle tabelle che a quote diverse ci chiariscono la variazione dei termini considerati.


Cruise at

(ft 0.305m)

Kgf

CL

CDi



b

DVv

4000 ft





1.52 m/s

10000 ft





1.83 m/s

OSSERVAZIONE

Dalla tabella appare evidente come, all'aumentare della quota, ma a parità delle velocità e delle altre condizioni, la massa d'aria "trattata" dal velivolo diminuisca (=rVpb2/4), come pure decresce la pressione dinamica di volo. Poiché le ali del velivolo devono sostenere lo stesso peso, segue un necessario aumento della velocità verticale con la quota, e quindi dell'angolo di deviazione della corrente, con conseguente aumento del coefficiente di portanza e del coefficiente di resistenza indotta ad esso collegato.


Consideriamo, a questo punto, le seguenti condizioni di avvicinamento per l'atterraggio:

- V = 1.1 Vs = 22.5 m/s; residuo di carburante pari a 10 Kgf ; peso totale 431 Kgf;

- V = 1.2 Vs = 24.6 m/s; residuo di carburante pari a 25 Kgf; peso totale 446 Kgf.

Ricordiamo che la densità dell'aria at sea level vale 1.22 Kg/m3.




Landing at

Sea level

Kgf


CL

CDi

b

DVv

0 m

431 Kg




3.37 m/s

0 m

446 Kg




3.20 m/s



Benchè nella seconda condizione di atterraggio il peso del velivolo sia maggiore rispetto al primo caso considerato, l'aumento di  circa il 10°/° della velocità di avvicinamento riduce i valori dei coefficienti di portanza e resistenza indotta; diminuiscono anche l'angolo di cui deve deviare la corrente e la componente verticale della velocità.


OSSERVAZIONE


Esiste, per ogni configurazione dei velivoli, una velocità minima di sostentamento, che si ricava dalla (1) ponendo L=W:


Vmin=(2W/qSCLmax)1/2                                                                                                               (3)


Come si vede dalla (3), a parità di carico alare (e di velocità di volo dell'aereo) la velocità minima di sostentamento Vmin diminuisce all'aumentare della quota.

I velivoli non sono macchine che possono sostenersi a partire da V=0. I carichi alari (W/S) dei velivoli, sia commerciali che militari, sono molto aumentati dal 1945 ad oggi, sicché le velocità minime di sostentamento degli aerei moderni sono elevate (dell'ordine di 50-100 m/s e anche più), e sono richieste lunghezze di decollo e atterraggio di 2-3 km. Si è, quindi, obbligati ad ubicare gli aeroporti lontano dai centri urbani con le conseguenze tecniche ed economiche che ne derivano.








Privacy

Articolo informazione


Hits: 1737
Apprezzato: scheda appunto

Commentare questo articolo:

Non sei registrato
Devi essere registrato per commentare

ISCRIVITI

E 'stato utile?



Copiare il codice

nella pagina web del tuo sito.


Copyright InfTub.com 2020